FMC 4 通道高速 AD 模块 FL9613 用户手册

Rev 1.0

版权声明:

Copyright ©2012-2018 芯驿电子科技 (上海) 有限公司

公司网址:

Http://www.alinx.com.cn

技术论坛: http://www.heijin.org

官方旗舰店: http://alinx.jd.com

邮箱: avic@alinx.com.cn

电话: 021-67676997

传真: 021-37737073

ALINX 微信公众号:

文档修订记录:

版本	时间	描述
1.0	2021/11/30	First Release

第一部分 FMC 高速 AD 模块说明介绍

黑金 FMC 高速 AD 模块 FL9613 为 4 路 250MSPS, 12 位的模拟转数字模块。FMC 模块的 AD 转换采用了 2 片 ADI 公司的 AD9613 芯片,每个 AD9613 芯片支持 2 路 AD 输入,所以 2 片 AD9613 芯片一共支持 4 路的 AD 输入。模拟 信号输入的电压范围为 1.7V P-P,接口为 SSMC。

FL9613 支持外部触发信号输入, 也是 SSMC 接口; 时钟模式支持内部参考 时钟输入, 外部参考时钟输入, 时钟选择可通过 SPI 总线配置

FL9613 的电气和机械设计依据 FMC 标准 (ANSI/VITA 57.1),为标准的 LPC 的 FMC 接口,用于连接 FPGA 开发板, FMC 的连接器型号为: ASP_134604_01 FL9613 模块实物照片如下:

FL9613 模块实物图

1.1 FL9613 模块的参数说明

以下为 FL9613 高速 AD 模块的详细参数:

- ▶ AD 转换芯片: 2 片 AD9613
- ▶ AD 转换通道: 4 路;
- ➤ AD 采样速率: 250MSPS;
- ➤ AD 采样数据位数: 12 位;
- ▶ AD 模拟信号输入范围: 1.7V P-P;
- ▶ AD 输入阻抗: 50 欧姆;
- ▶ 模拟信号输入接口: SSMC 接口;
- ▶ 外部时钟输入:1路;
- ▶ 外部触发信号输入:1路
- ▶ 数字接口电平标准:LVDS 电平
- ▶ 配置接口: SPI 接口;
- ▶ 工作温度: -40°~85°;

1.2 FL9613 模块的结构图

76.5mm

FL9613 高速 AD 模块尺寸结构图

1.3 安装和使用要求

FL9613 模块必须配合带 FMC 接口的开发板使用,开发板的 FMC 必须符合 FMC 标准 (ANSI/VITA57.1)。开发板通过 FMC 连接器为模块提供直流 3.3V, 直流 12V,直流 VADJ 三种电源。模块允许的 VADJ 的电压范围为 1.65V~3.3V, 考虑 FPGA 开发板的 LVDS 数据通信,一般建议 VADJ 的运行电压为+2.5V 或者 1.8V。

板卡安装时,操作人员注意做好精度防护,在无静电防护情况下,请不要直 接接触板卡元器件。

FL9613 模块输出数据为 LVDS 信号, 板卡的控制信号和触发信号为 LVCMOS 信号, 电压标准取决于 VADJ 的电源电压。

第二部分 模块功能说明

2.1 FL9613 模块原理框图

FL9613 模块的原理设计框图如下:

关于 AD9613 的电路具体参考设计请参考 AD9213 的芯片手册。

2.2 输入接口描述

2.2.1 外部触发输入接口

外部触发输入支持 LVTTL/LVCMOS 3.3V 电平输入方式,通过板上的电平转 换芯片转换成 VADJ 的电平后,连接到 FMC 连接器管脚上。

2.2.2 AD 输入接口

FL9613 设计输入为交流耦合方式,最高输入信号可达 300Mhz,输入阻抗为 50 欧姆,模拟信号的范围为 1.7Vp-p。

2.2.3 时钟输入

板上时钟产生模块选用 ADI 公司的 AD9518-3 芯片,设计使用内部 VCO, VCO 的频率范围为 1.75G~2.25G;内部时钟和外部参考时钟通过程序来切换; 时钟模块配置通过连接到 FMC 的 SPI 总线实现。

内部参考时钟默认焊接 25M 晶振, 连到 AD9518 的 REF1 脚; 外参考时钟通 过变压器转换成差分连到 CLK+-脚。

2.3 FMC 接口描述

FL9613 模块的 FMC 接口为标准的 LPC, 下面只列了 FMC 接口上电源和 AD 芯片接口的信号定义, GND 的信号没有列出, 具体用户可以参考原理图。

Pin Number	Signal Name	Description
C35	+12V	12V 电源输入
C37	+12V	12V 电源输入
D32	+3.3V	3.3V 电源输入
G7	AD1_DCO-	AD1 通道 LVDS 的数据时钟输出-N.
G6	AD1_DCO+	AD1 通道 LVDS 的数据时钟输出-P.
H8	AD1_D0-	AD1 通道 LVDS 的数据 0 输出-N.
H7	AD1_D0+	AD1 通道 LVDS 的数据 0 输出-P.
C11	AD1_D1-	AD1 通道 LVDS 的数据 1 输出-N.
C10	AD1_D1+	AD1 通道 LVDS 的数据 1 输出-P.
D12	AD1_D2-	AD1 通道 LVDS 的数据 2 输出-N.
D11	AD1_D2+	AD1 通道 LVDS 的数据 2 输出-P.
H11	AD1_D3-	AD1 通道 LVDS 的数据 3 输出-N.
H10	AD1_D3+	AD1 通道 LVDS 的数据 3 输出-P.
C15	AD1_D4-	AD1 通道 LVDS 的数据 4 输出-N.
C14	AD1_D4+	AD1 通道 LVDS 的数据 4 输出-P.
G13	AD1_D5-	AD1 通道 LVDS 的数据 5 输出-N.
G12	AD1_D5+	AD1 通道 LVDS 的数据 5 输出-P.
H14	AD1_D6-	AD1 通道 LVDS 的数据 6 输出-N.
H13	AD1_D6+	AD1 通道 LVDS 的数据 6 输出-P.

D15	AD1 D7-	AD1 通道 LVDS 的数据 7 输出-N.
D14	AD1_D7+	AD1 通道 LVDS 的数据 7 输出-P.
G16	AD1_D8-	AD1 通道 LVDS 的数据 8 输出-N.
G15	AD1_D8+	AD1 通道 LVDS 的数据 8 输出-P.
H17	AD1_D9-	AD1 通道 LVDS 的数据 9 输出-N.
H16	AD1_D9+	AD1 通道 LVDS 的数据 9 输出-P.
D18	AD1_D10-	AD1 通道 LVDS 的数据 10 输出-N.
D17	AD1_D10+	AD1 通道 LVDS 的数据 10 输出-P.
C19	AD1_D11-	AD1 通道 LVDS 的数据 11 输出-N.
C18	AD1_D11+	AD1 通道 LVDS 的数据 11 输出-P.
D9	AD1_OR-	AD1 通道输入范围超出指示-N
D8	AD1_OR+	AD1 通道输入范围超出指示-P
G9	AD1_SPI_CS	AD1 芯片的 SPI 通信片选信号
G3	AD1_SPI_SCLK	AD1 芯片的 SPI 通信时钟信号
G10	AD1_SPI_SDIO	AD1 芯片的 SPI 通信数据信号
C23	AD2_DCO-	AD2 通道 LVDS 的数据时钟输出-N.
C22	AD2_DCO+	AD2 通道 LVDS 的数据时钟输出-P.
G22	AD2_D0-	AD2 通道 LVDS 的数据 0 输出-N.
G21	AD2_D0+	AD2 通道 LVDS 的数据 0 输出-P.
H23	AD2_D1-	AD2 通道 LVDS 的数据 1 输出-N.
H22	AD2_D1+	AD2 通道 LVDS 的数据 1 输出-P.
C27	AD2_D2-	AD2 通道 LVDS 的数据 2 输出-N.
C26	AD2_D2+	AD2 通道 LVDS 的数据 2 输出-P.
G25	AD2_D3-	AD2 通道 LVDS 的数据 3 输出-N.
G24	AD2_D3+	AD2 通道 LVDS 的数据 3 输出-P.
H26	AD2_D4-	AD2 通道 LVDS 的数据 4 输出-N.
H25	AD2_D4+	AD2 通道 LVDS 的数据 4 输出-P.
D27	AD2_D5-	AD2 通道 LVDS 的数据 5 输出-N.
D26	AD2_D5+	AD2 通道 LVDS 的数据 5 输出-P.
G28	AD2_D6-	AD2 通道 LVDS 的数据 6 输出-N.
G27	AD2_D6+	AD2 通道 LVDS 的数据 6 输出-P.
H29	AD2_D7-	AD2 通道 LVDS 的数据 7 输出-N.
H28	AD2_D7+	AD2 通道 LVDS 的数据 7 输出-P.
G31	AD2_D8-	AD2 通道 LVDS 的数据 8 输出-N.
G30	AD2_D8+	AD2 通道 LVDS 的数据 8 输出-P.
H32	AD2_D9-	AD2 通道 LVDS 的数据 9 输出-N.
H31	AD2_D9+	AD2 通道 LVDS 的数据 9 输出-P.
G34	AD2_D10-	AD2 通道 LVDS 的数据 10 输出-N.
G33	AD2_D10+	AD2 通道 LVDS 的数据 10 输出-P.
H35	AD2_D11-	AD2 通道 LVDS 的数据 11 输出-N.
H34	AD2_D11+	AD2 通道 LVDS 的数据 11 输出-P.
D21	AD2_OR-	AD2 通道输入范围超出指示-N
D20	AD2 OR+	AD2 通道输入范围超出指示-P

G18	AD2_SPI_CS	AD2 芯片的 SPI 通信片选信号
D24	AD2_SPI_SCLK	AD2 芯片的 SPI 通信时钟信号
D23	AD2_SPI_SDIO	AD2 芯片的 SPI 通信数据信号
H38	CLK_CS	时钟芯片的 SPI 通信片选信号
G36	CLK_RESET	时钟芯片的复位信号
H37	CLK_SCLK	时钟芯片的 SPI 通信时钟信号
H19	CLK_SDIO	时钟芯片的 SPI 通信数据双向信号
G37	CLK_SDO	时钟芯片的 SPI 通信数据输出信号
G19	CLK_SYNC	时钟芯片的同步信号
Н5	FPGA_CLK-	FPGA 参考时钟输入-N
H4	FPGA_CLK+	FPGA 参考时钟输入-P
C34	GA0	EEPROM 地址位 0 位
D35	GA1	EEPROM 地址位1位
C30	SCL	EEPROM 的 I2C 时钟
C31	SDA	EEPROM 的 I2C 数据
H20	AD_SYNC_V	AD 之间同步信号
G2	TRIG_IN	触发输入信号
G39	VADJ	VADJ电源输入
H40	VADJ	VADJ 电源输入

第三部分 AD 采样时序和设计

3.1FL9613 数字输出时序

AD9613 双通道 AD 的数字输出配置为 LVDS 输出模式,2 路通道(A 和 B) 共用一对差分时钟信号和 12 对差分数据信号。数据输出的顺序为交替输出,一路 AD 在时钟的上升沿输出,另外一路 AD 数据在时钟的下降沿输出。

ALINX

2.5 FL9627 程序设计

我们提供了黑金开发板的 AD 采集和显示的例程,在这个例程中 2 个 AD9613 输入的差分 LVDS 时钟信号和差分 LVDS 数据信号通过 IBUFDS 模块分别转换成 单端信号,12 位的数据再通过 IDDR 模块转换成 A 通道 12 位数据和 B 通道 12 位数据。A 通道和 B 通道的 12 位数据通过 ILA 在线 debug 观察。

上电后,首先需要通过 SPI 接口对时钟芯片 AD9518 的寄存器进行配置,使 得输出 250Mhz 的差分时钟给 AD9613 芯片。另外也要通过 SPI 接口对 AD9613 的寄存器进行配置。

FPGA的 AD 测试的功能框图如下:

下面对 FPGA 程序中用到的各个模块做一下简单的功能介绍:

1. ad9613_lut_config.v

AD9613寄存器配置表,这里只配置了2个寄存器的值,一个是寄存器0x17, 另一个是寄存器0xFF。

寄存器 0x17 为配置输出时钟和数据之间的延迟关系, 这个可以根据实际测量结

果来调整。

0x17	DCO output delay (global)	Enable DCO clock delay	Open	Open	DCO clock delay [delay = (3100 ps × register value/31 +100)] 00000 = 100 ps 00001 = 200 ps 00010 = 300 ps	0x00	
					 11110 = 3100 ps 11111 = 3200 ps		

对寄存器 0x17 配置后,需要对 0xFF 寄存器的最低位写 1 后才能生效。

Addr (Hex)	Register Name	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)	Default Value (Hex)	Default Notes/ Comments
0xFF	Transfer	Open	Open	Open	Open	Open	Open	Open	Transfer	0x00	Synchronously transfers data from the master shift register to the slave

具体的寄存器含义大家参考 AD9613 芯片手册。

2. ad9518_lut_config.v

AD9518 寄存器配置表,这里配置的寄存器比较多,具体参考芯片手册。

3. spi_config.v

此模块通过调用 SPI 通信模块对 AD9613 芯片和 AD9518 进行寄存器配置。

3. top.v

top 模块除了实例化上面的子模块外,还实现以下几个功能。

- ◇ 调用 PLL IP 产生 SPI 所需的 50Mhz 参考时钟。
- ◇ 调用 IBUFDS 原语实现 LVDS 差分时钟信号和数据信号转换成单端时钟和单端数据。
- ◇ 调用 IDDR 原语实现双沿的 A, B 通道的数据转换成单沿的 A 通道数据和 B 通道数据。
- ◇ 调用 ILA IP 观察 AD1 和 AD2 的数据,用户可以自己修改 ILA 的接口信号 来观察自己想观察的信号。

4. xdc 约束文件

xdc 约束文件里定义了两个 AD 芯片和时钟芯片的通信的管脚。

第四部分 硬件连接和测试

FL9613 模块和 FPGA 开发板的硬件连接很简单,只要把 FMC 接口跟开发板的 FMC 接口对插就可以,然后用螺丝固定。我们这边使用信号发生器产生模拟信号连接到 AD1_A 和 AD1_B 通道的 SMC 接口上。以下为黑金 AXKU040 开发板(FMC1)的和 FL9613 的硬件连接图:

开发板上电,信号发生器产生的2路正选波,一路频率为1Mhz,另一路位 10Mhz。峰峰值为3.4 Vp-p。因为我们这边的信号发生器内阻是50欧姆,FL9613 的输入阻抗也是50欧姆,输出的信号会有分压,所以这样输入到AD模块的峰峰 值为1.7 Vp-p。

AD 输入的信号示波器测量波形如下

然后在 Vivado 软件里下载程序。

SON adc_test.sdk - C/C++ - spi/src/ad9518.c - Xilinx SDK	
File Edit Navigate Search Project Run Xilinx Window H	lelp
😁 🕶 🔚 🔞 🗞 = 🍕 🗙 🖸 🏭 📓 🚳 🌾 =	
🎦 Project Explorer 🕱 📄 🔄	ξ _τ 1 System Debugger using Debug_spi.elf on Local
 ▷ 20 spi ▷ 30 spi_bsp ▷ 40 top_latform_0 	Run As Run Configurations Organize Favorites
	<pre>struct reginto addsis_init_data[j' = { { {0x0000, 0x3C},//soft reset {0x0000, 0x18}, {0x0004, 0x08},//[0] read back {0x004, 0x08},//[0] read back {0x001, 0x7C},/pfd and charg {0x0011, 0x01},//14bit R divid</pre>

在 VIVADO 里 Open hardware Manager, 并 Open target。

Open Hardware Manager

HARDWARE MANAGER - localhost/xilinx_tct/Digilent/210249854
 No hardware target is open. Open target

Hardware	? _
Q ¥ ♦ Ø ▶ ≫ ■	

hw_ila_1为 AD1 的观察的数据,点击触发,就可以看到 2 路 AD 的正选波数据。

如果波形显示不对,可以检查以下几项:

1) 波形显示设置成 Analog。

	10[44:0]	
auc I_uala	Cu <u>t</u>	Ctrl+X
	<u>С</u> ору	Ctrl+C
	<u>P</u> aste	
> 📢 adc1_data,	Delete	
	<u>F</u> ind	Ctrl+F
	Find <u>V</u> alue	Ctrl+Shift+F
	Select <u>A</u> ll	Ctrl+A
	Expand	
	<u>C</u> ollapse	1:03:38
	<u>U</u> ngroup	
Settings - hw_ila	R <u>e</u> name	F2 rigger Setup - hw_ila_1 × Cap
• ► >>	Name	$\rightarrow 0$ $ + = 0 $
0	Waveform Style	▶ Digital
Core status	Signal Color	⊳a ✓ <u>A</u> nalog a
C	Divider Color	Analoa Settinas

2) 数据 Radix 要设置成 Signed Decimal。

	Radix >		<u>D</u> efault	
	Edit Enumeration		<u>B</u> inary	
	Show as <u>E</u> numeration		Hexadecimal	
	Reverse <u>B</u> it Order		<u>O</u> ctal	
\mathbf{X}	New Gr <u>o</u> up		ASCII	
	New D <u>i</u> vider		Unsigned Decimal	
	New <u>V</u> irtual Bus	~	Signed Decimal	
	Create User Defined Probe		Signed <u>M</u> agnitude	