FMC 4 路干兆以太网模块 FL2121 用户手册

Rev 1.0

版权声明:

Copyright ©2012-2018 芯驿电子科技 (上海) 有限公司

公司网址:

Http://www.alinx.com.cn

技术论坛:

http://www.heijin.org

官方旗舰店:

http://alinx.jd.com

邮箱:

avic@alinx.com.cn

电话:

021-67676997

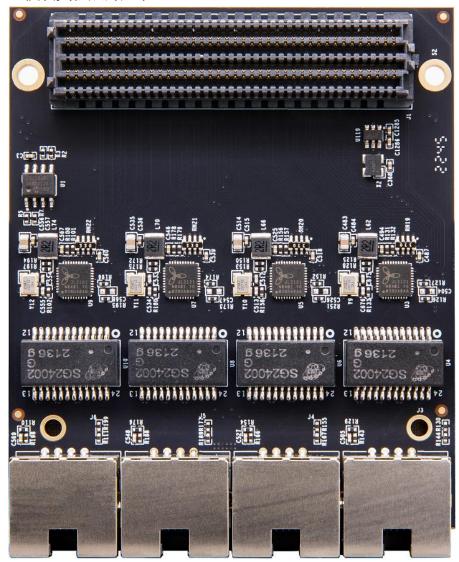
传真:

021-37737073

ALINX 微信公众号:

文档修订记录:

版本	时间	描述
1.0	2022/11/20	First Release



第一部分 FMC 高速以太网模块说明介绍

黑金 FMC 千兆以太网模块 FL2121 为 4 路 10/100/1000Mbps 自适应的以太网通信接口模块。 FMC 模块的千兆 PHY 芯片采用了 4 片景略半导体公司的JL2121 以太网 PHY 芯片,支持 10/100/1000 Mbps 网络传输速率。4 路网络接口采用常用的 RJ45 连接器跟外部网络连接和通信。

模块有一个标准的 LPC 的 FMC 接口,用于连接 FPGA 开发板, FMC 的连接器型号为: ASP 134604_01

FL2121 模块实物照片如下:

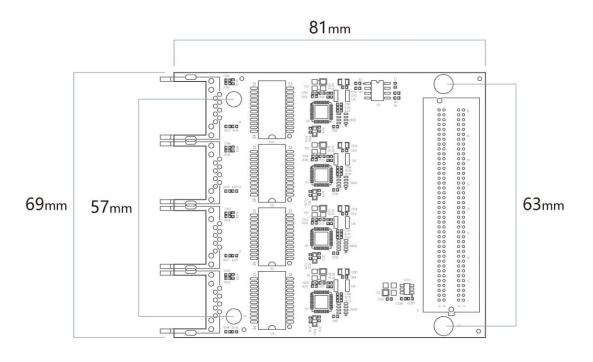
FL2121 模块实物图

1.1 FL2121 模块的参数说明

以下为 FL2121 千兆以太网模块的详细参数:

➤ 干兆以太网芯片: 4 片 JL2121

➤ 网络接口: 4路 RJ45;

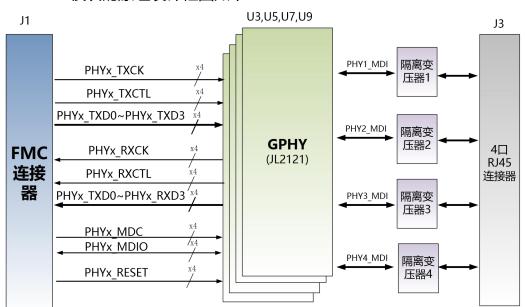

▶ 以太网通信速率: 支持 10/100/1000 Mbps;

▶ 通信方式: RGMII;

▶ 配置接口: MDIO 接口;

➤ 工作温度: -40°~85°;

1.2 FL2121 模块的结构图



FL2121 千兆以太网模块尺寸结构图

第二部分 模块功能说明

2.1 FL2121 模块原理框图

FL2121 模块的原理设计框图如下:

2.2 太网芯片

以太网芯片采用景略半导体的工业级以太网 GPHY 芯片(JL2121-N040I)为用户提供网络通信服务。PS 端的以太网 PHY 芯片是连接到 ZYNQ 的 PS 端 BANK502 的 MIO 接口上。PL 端的以太网 PHY 芯片是连接到 BANK66 的 IO 上。JL2121 芯片支持 10/100/1000 Mbps 网络传输速率,通过 RGMII 接口跟 MPSOC 系统的 MAC 层进行数据通信。JL2121D 支持MDI/MDX 自适应,各种速度自适应,Master/Slave 自适应,支持 MDIO 总线进行 PHY 的寄存器管理。

JL2121 上电会检测一些特定的 IO 的电平状态,从而确定自己的工作模式。 下表描述了 GPHY 芯片上电之后的默认设定信息。

配置 Pin 脚	说明	配置值
RXD3_ADR0	MDIO/MDC 模式的 PHY 地址	PHY Address 为 001
RXC_ADR1		
RXCTL_ADR2		
RXD1_TXDLY	TX 时钟 2ns 延时	延时
RXD0_RXDLY	RX 时钟 2ns 延时	延时

GPHY 芯片默认配置值

当网络连接到干兆以太网时,MPSOC 和 PHY 芯片 JL2121 的数据传输时通过 RGMII 总线通信,传输时钟为 125Mhz,数据在时钟的上升沿和下降样采样。

当网络连接到百兆以太网时,MPSOC 和 PHY 芯片 JL2121 的数据传输时通过 RMII 总线通信,传输时钟为 25Mhz。数据在时钟的上升沿和下降样采样。

2.3 模块 FMC LPC 的引脚分配:

下面只列了电源和网络芯片接口的信号, GND 的信号没有列出, 具体用户可以参考原理图。

Pin Number	Signal Name	Description
C35	+12V	12V 电源输入
C37	+12V	12V 电源输入
D32	+3. 3V	3. 3V 电源输入
C34	GAO	EEPROM 地址位 0 位
D35	GA1	EEPROM 地址位 1 位
D11	PHY1_MDC	以太网第一路 MDIO 管理时钟
C11	PHY1_MDIO	以太网第一路 MDIO 管理数据
D12	PHY1_RESET	以太网第一路复位信号
G6	PHY1_RXCK	以太网第一路 RGMII 接收时钟
G7	PHY1_RXCTL	以太网第一路接收数据有效信号
H4	REFCLK	50MHz 的参考时钟
Н7	PHY1_RXD0	以太网第一路接收数据 Bit0
Н8	PHY1_RXD1	以太网第一路接收数据 Bit1
G9	PHY1_RXD2	以太网第一路接收数据 Bit2
G10	PHY1_RXD3	以太网第一路接收数据 Bit3
H11	PHY1_TXCK	以太网第一路 RGMII 发送时钟
H14	PHY1_TXCTL	以太网第一路发送数据有效信号
H10	PHY1_TXD0	以太网第一路发送数据 Bit0
G12	PHY1_TXD1	以太网第一路发送数据 Bit1
G13	PHY1_TXD2	以太网第一路发送数据 Bit2
H13	PHY1_TXD3	以太网第一路发送数据 Bit3
D18	PHY2_MDC	以太网第二路 MDIO 管理时钟
C19	PHY2_MDIO	以太网第二路 MDIO 管理数据
H20	PHY2_RESET	以太网第二路复位信号
D8	PHY2_RXCK	以太网第二路 RGMII 接收时钟
D9	PHY2_RXCTL	以太网第二路接收数据有效信号
C10	PHY2_RXD0	以太网第二路接收数据 Bit0
D14	PHY2_RXD1	以太网第二路接收数据 Bit1
C15	PHY2_RXD2	以太网第二路接收数据 Bit2
D15	PHY2_RXD3	以太网第二路接收数据 Bit3
H17	PHY2_TXCK	以太网第二路 RGMII 发送时钟
H19	PHY2_TXCTL	以太网第二路发送数据有效信号
G16	PHY2_TXD0	以太网第二路发送数据 Bit0
H16	PHY2_TXD1	以太网第二路发送数据 Bit1
G18	PHY2_TXD2	以太网第二路发送数据 Bit2

G19	PHY2_TXD3	以太网第二路发送数据 Bit3
H28	PHY3_MDC	以太网第三路 MDIO 管理时钟
G28	PHY3_MDIO	以太网第三路 MDIO 管理数据
H29	PHY3_RESET	以太网第三路复位信号
D20	PHY3_RXCK	以太网第三路 RGMII 接收时钟
G21	PHY3_RXCTL	以太网第三路接收数据有效信号
G22	PHY3_RXD0	以太网第三路接收数据 Bit0
H22	PHY3_RXD1	以太网第三路接收数据 Bit1
D23	PHY3_RXD2	以太网第三路接收数据 Bit2
D24	PHY3_RXD3	以太网第三路接收数据 Bit3
H25	PHY3_TXD3	以太网第三路发送数据 Bit3
G27	PHY3_TXCTL	以太网第三路发送数据有效信号
H23	PHY3_TXD0	以太网第三路发送数据 Bit0
G24	PHY3_TXD1	以太网第三路发送数据 Bit1
G25	PHY3_TXD2	以太网第三路发送数据 Bit2
H26	PHY3_TXCK	以太网第三路 RGMII 发送时钟
Н35	PHY4_MDC	以太网第四路 MDIO 管理时钟
Н37	PHY4_MDIO	以太网第四路 MDIO 管理数据
Н38	PHY4_RESET	以太网第四路复位信号
C22	PHY4_RXCK	以太网第四路 RGMII 接收时钟
C23	PHY4_RXCTL	以太网第四路接收数据有效信号
D26	PHY4_RXD0	以太网第四路接收数据 Bit0
C26	PHY4_RXD1	以太网第四路接收数据 Bit1
D27	PHY4_RXD2	以太网第四路接收数据 Bit2
C27	PHY4_RXD3	以太网第四路接收数据 Bit3
Н32	PHY4_TXCK	以太网第四路 RGMII 发送时钟
H34	PHY4_TXCTL	以太网第四路发送数据有效信号
G31	PHY4_TXD0	以太网第四路发送数据 Bit0
Н31	PHY4_TXD1	以太网第四路发送数据 Bit1
G33	PHY4_TXD2	以太网第四路发送数据 Bit2
G34	PHY4_TXD3	以太网第四路发送数据 Bit3
C30	SCL	EEPROM 的 I2C 时钟
C31	SDA	EEPROM 的 I2C 数据
G39	VADJ	VADJ 电源输入
H40	VADJ	VADJ 电源输入

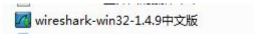
第三部分 硬件连接和测试

FL2121 模块和 FPGA 开发板的硬件连接很简单,只要把 FMC 接口跟开发板的 FMC 接口对插就可以,然后用螺丝固定。以下为黑金 AX7325 开发板的和

FL2121 模块的硬件连接图:

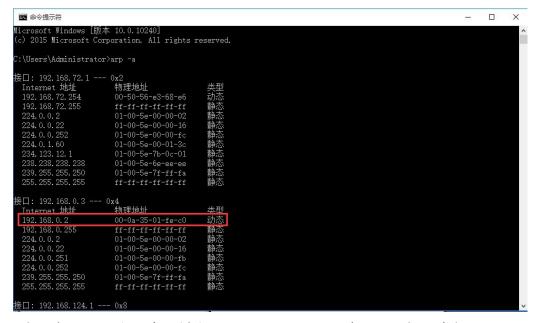
▶ 准备工作

第一步: 首先确认一下自己 PC 的网卡是否是千兆网卡, 用户可以点击本地连接 查看,再用五类+或者六类网线连接开发板的网口和 PC 的网口。


第二步: 修改 PC 的 IP 地址为 192.168.0.3。PC 的 IP Address 需要和程序中 mac test.v 中设置一致,不然网络调试助手会接收不到开发板发送的 UDP 数据 包。

- 48'h00_0a_35_01_fe_c0) 8'h80), 32'hc0a80002). .TTL
 .source_ip_addr
 .destination_ip_addr
 .udp_send_source_port
 .udp_send_destination_port

第三步(可选):安装 Wireshark 是为了方便用户网络通信的调试,安装光盘的 TOOL 目录下的网络抓包工具 Wireshark, 我们在实验的时候可以用这工具来查看 PC 网口发送的数据和接收到的数据的详细信息。


> 以太网通信测试

第一步: 烧写 bit 文件到 FPGA 芯片。


第二步:按下开发板的 KEY2 按键,之后打开 CMD 窗口,输入 arp -a 查看 ARP

绑定结果,可以看到开发板的 IP 地址和 MAC 地址已经缓存。

第三步:在 CMD 窗口中,输入 ping 192.168.0.2 查看 PC 与开发板是否 ping 通。

第四步: 打开 TOOL 目录下的网络调试助手并设置参数如下,再按连接按钮(这里的本地的 IP 地址为 PC 的 IP Address,本地端口需要跟 FPGA 程序中的一致,为8080)。

这时网络数据接收窗口会显示 FPGA 发给 PC 的以太网数据包"Hello ALINX HEIJIN"目标主机的 IP 地址需要和 FPGA 程序中的 IP 地址一致,目标端口号也需要和 FPGA 程序的一致(8080)。如下图网络显示:

第五步:再在网络调试助手的发送窗口发送一大串字符,在网络的数据接收窗口我们可以看到从 FPGA 返回的数据也变成刚发送的字符串。

也可以发送较少字符, 低于 46 字节, FPGA 程序会自动补充至 46 字节, 如下图:

第六步:这一步对用户来讲是可选的,用户如果想查看更多数据包传输的信息,可以使用网络抓包工具 Wireshark 来查看 PC 的网卡接收和发送的网络数据。